Posts Tagged ‘research’

Reading forth A Universe of Consciousness (G. Tononi, G. Edelman), I go straitly in finding my hypothesis in a good book written by greater people than me! It is very amazing for me! xD

Beginning in the middle of the matter, I just come upon the notion of complexity.

The story before: neurons, synapses, biochemical signaling, excitability threshold, fibers, systems, stimulus, respondence of the brain and so on. Now, the problem is: what is that the brain being activated and we “feel”? No more than one of the biggest questions philosophers and scientists have not caught the answer to yet: what’s between brain and thoughts?

Now, the following is the architecture of my general idea.

What we can merely see is that something related of our thought really exists and it is our brain; well, please look over at this as a matter of fact, for the debate would be too long and articulated for this place to suffice. Onward, the brain is composed by neurons, glia and other strange, nasty and rack stuff; surely we can exclude that single neurons create consciousness, right? Well, so consciousness should emerge somewhere in between neurons and the whole brain.

If I am not wrong, between them we think about connections, fibers, fascicles, systems and bigger associations of all this. Soon the question “Do those things suffice for the consciousness?” arises. Some scientists’ answer “No” comes next. The last, but not least, point of view is that time has the royal scepter in all this, as I probably mentioned before, for the functions of the brain have to be integrated and synchronized in order to make out consciousness from other mind states.

This is not enough.

Neuron A can be turned on or off: it has two possible states, as neuron B does, and neuron C too, and so on. Moreover: neurons A, B, C … can be excitatory or inhibitory; namely they carry a message of “yes, go on!” or “stop here, don’t go further!” to other neurons and their signals. The only number of possible states the brain could find itself to be in ( “2 possible states” times “2 actions” times “the factorial of the number of neurons in the brain” times “the mean of the number of cells a single neuron could be linked to”) does not correspond to the integrity of consciousness. Tononi and Edelman put it into mathematical words defining a measure of the information a particular group of nervous cells carry over to the totality of a certain state of consciousness and proved that it is not the absence of coordination nor the total unison of the signals that give rise to our conscious experience. Neurons are strictly bound together with other near neurons, and less rigidly with distant ones. This type of bounding is achievable thanks to the phenomenon of reentry that let each neuron have a little feedback from the cells it is linked with, as a sort of read-confirmation in an email.

Complexity and time are the profile of the next step in the story. How do the neurons linked together by the reentry do their weird work in controlling the intricacy of conscious experience? T. and E. says that a particular state of the activated brain is not to be examined by an external viewer but we should ask ourselves what the brain itself comprehend of the situation by that particular state. The mathematical coefficient used here describes the informativeness of a certain state as its likelihood of being differentiated from the other possible states, and it is hypothesized that the brain recognizes the differences. There is not an organizer of the sensations that tells the brain what to do. It is a matter of differences: there are infinite possible states, each different from the others, and the differences are, in my opinion, strictly dominated by time.

“A C B” is as different from “A B C”  in this as “do mi sol” is different from “mi sol do” in music armony (anatomy). Moreover, “AAACCCBBB” (declared, e.g., that each letter expresses the information “for a second”) is also different from “AACCCCCBB” and “AaAcCcBbB” (in this case, B is different from b, like a Do is different from a higher Do in the scale) from “aAaCcCbBb”. In simple words, there are some types of difference sources: the sequence, the activation time, the path, the action type (excitation/inhibition) of neurons, and other ones I have not thought of yet. 🙂

fourth-dimension1In this prospective, even if it is hardly defined by philosophers, part of which regard it as a human arrangement and invention, time could largely be considered a “fourth dimension”, hence the human mind works on at least four different dimensions. I am not yet convinced that there are only four of them in the human thought, but I am too tired now to think about it! xD However, this could be a great point in the interpretation of the impossibility (or, at least, the difficulty) of a clear explanation of how the human mind works, only because the subject lives in four (or more) dimensions and we merely live in three!! In this context, I shall admit that language has a particular place, but it is not a matter of me yet!

Returning to our topic, all this can generate differencies in the shape of a thought. remember that all this is coordinates by reentry, and that results in a first attempt to a synchrony that is not a total synchrony (I said that a total synchrony is not compatible with consciousness; in fact, it is observed in REM sleep and epileptic states) but a more function-coordinated-like state.

All this is valid for both the external stimulus-dependent brain activity and the internal one (e.g. our private thoughts), clarifying some part of the living experience.

To be continued… 😉


Read Full Post »


A disclaimer for graduate school.

Suppose the doors to the lab featured a disclaimer for new graduate students saying: “Warning: years of hard work inside, with no guarantee of a career.” Some might think twice before entering. Although many graduate students recognize the pitfalls of striving for a position in academia, others still remain idealistic about their prospects.

At least one laboratory’s website now offers a measured dose of reality (http://www.biology.duke.edu/johnsenlab/advice.html). “Before you apply to this lab or any other,” writes Sönke Johnsen on his group’s website, “there are a few things to keep in mind.” Johnsen, an associate biology professor at Duke University in Durham, North Carolina, stresses that graduate school in biology is not a sure path to success nor is it a certainty that students will achieve a career similar to that of their adviser. He underscores this argument by doing the maths. On average, a professor at a research university looks after 3 students at a time for about 5 years each, which equates to 18 students over a 30-year career. Given that the total number of academic positions has stayed roughly constant in recent years, these 18 people are, in effect, competing for one job.

Should more labs post such disclaimers? Quite possibly, given the positive response Johnsen’s note has received from contributors at http://www.scienceblogs.com. No wise adviser would allow for false promises or false hope — although lab heads should also be sure to emphasize that PhD scientists, especially those open to non-academic jobs, are generally quite employable.

Johnsen goes on to offer another reality check, albeit one related more to quality of life than job openings. Make sure to pursue your passions, he writes, before committing to an intense five or six years in the lab. And make sure that you don’t commit to a miserable, yet high-profile, lab on the assumption that the pay-off, half a dozen years down the line, will make it all worthwhile.

Once you’ve read and understood a disclaimer of this type, you’re probably ready to walk through those doors.

Read Full Post »